Đối tượng toán học là gì? Chi tiết về Đối tượng toán học cập nhật 2022

Muốn nghiên cứu một đối tượng hay một hiện tượng nào bằng phương tiện toán học thì ta phải gạt bỏ tất cả đặc điểm về chất của đối tượng và hiện tượng, chỉ giữ lại những đặc trưng cho số lượng và hình dạng của chúng và trừu tượng dần lên. Đối tượng nghiên cứu của toán học là những cái không phải trong tự nhiên. Đó là những gì mà các nhà toán học nghĩ ra.

Đối tượng toán học là gì?

Một đối tượng toán học là một đối tượng trừu tượng phát sinh trong toán học. Khái niệm này được nghiên cứu trong triết học toán học.

Trong hoạt động toán học, một đối tượng là bất cứ cái gì đã được (hoặc có thể được) chính thức xác định, và với nó người ta có thể thực hiện suy diễn logic và các chứng minh toán học. Các đối tượng toán học thường gặp bao gồm số, hoán vị, phân vùng, ma trận, tập hợp, hàm số, và quan hệ. Hình học với tư cách là một nhánh của toán học có các đối tượng như lục giác, điểm, đường thẳng, tam giác, đường tròn, mặt cầu, đa diện, không gian topo và không gian đa tạp. Một nhánh khác—đại số—có nhóm, vành, trường, mạng lưới. Các thể loại đồng thời là nhà cho các đối tượng toán học và cũng là các đối tượng toán học. Trong lý thuyết chứng minh, các chứng minh và định lý cũng là các đối tượng toán học.

Trạng thái bản thể luận của các đối tượng toán học đã là chủ đề của nhiều nghiên cứu và tranh luận của các nhà triết học toán học.[1]

Tham khảo

  1. ^ Burgess, John, and Rosen, Gideon, 1997.

Sách tham khảo

  • Azzouni, J., 1994. Metaphysical Myths, Mathematical Practice. Cambridge University Press.
  • Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object. Oxford Univ. Press.
  • Davis, Philip and Reuben Hersh, 1999 [1981]. The Mathematical Experience. Mariner Books: 156-62.
  • Gold, Bonnie, and Simons, Roger A., 2008. Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America.
  • Hersh, Reuben, 1997. What is Mathematics, Really? Oxford University Press.
  • Sfard, A., 2000, “Symbolizing mathematical reality into being, Or how mathematical discourse and mathematical objects create each other,” in Cobb, P., et al., Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools and instructional design. Lawrence Erlbaum.
  • Stewart Shapiro, 2000. Thinking about mathematics: The philosophy of mathematics. Oxford University Press.

Liên kết ngoài

  • Stanford Encyclopedia of Philosophy: “Abstract Objects”—by Gideon Rosen.
  • Wells, Charles, “Mathematical Objects.”
  • AMOF: The Amazing Mathematical Object Factory Lưu trữ 2010-07-17 tại Wayback Machine
  • Mathematical Object Exhibit Lưu trữ 2010-06-11 tại Wayback Machine


Lấy từ “https://vi.wikipedia.org/w/index.php?title=Đối_tượng_toán_học&oldid=64988286”

Từ khóa:

đối tượng của toán học không có tính chất nào
đối tượng của toán học không có tính chất nào sau đây:
đối tượng toán học
đối tượng nghiên cứu của toán học
đối tượng của toán học

LADIGI – Công ty dịch vụ SEO uy tín giá rẻ, SEO từ khóa, SEO tổng thể cam kết lên Top Google uy tín chuyên nghiệp, an toàn, hiệu quả.

Nguồn: Wikipedia

Scores: 4.7 (151 votes)

100 lần tự tìm hiểu cũng không bằng 1 lần được tư vấn